EconPapers    
Economics at your fingertips  
 

A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD

Jiale Li, Zihao Song, Xuefei Wang, Yanru Wang and Yaya Jia

Energy, 2022, vol. 251, issue C

Abstract: Accurate typhoon wind speed prediction is significant because it enables wind farms to take advantage of high wind speeds and to simultaneously protect wind turbines from damage. However, the wind characteristics of the typhoon are highly random, fluctuating, and nonlinear, which makes precise prediction difficult. One-year wind data collected from a wind farm on the southeast coast of China are employed in the study. The characteristics of the typhoon are analyzed, and a sensitivity study is carried out by comparing two groups of training datasets. This study proposes a hybrid approach that considers both the physical model and the artificial neural network (ANN) model to accurately predict the short-term typhoon wind speed. The variational mode decomposition (VMD) algorithm is selected to decompose wind speed, and the particle swarm optimization (PSO) method is employed to optimize the bidirectional, long short-term memory (Bi-LSTM) prediction model. The results show that the proposed PSO-VMD-Bi-LSTM has strong robustness for making uncertainty predictions and can be utilized to predict the wind speed of typhoons. This study demonstrates the potential of an innovative ANN method to predict wind speed during the typhoon period.

Keywords: Typhoon; Wind speed prediction; Artificial neural network (ANN); PSO; Bi-LSTM; VMD (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222007514
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007514

DOI: 10.1016/j.energy.2022.123848

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007514