Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD
Yunus Celik,
Derek Ingham,
Lin Ma and
Mohamed Pourkashanian
Energy, 2022, vol. 251, issue C
Abstract:
Although the J-shaped aerofoil is a possible solution to enhance the torque generation at the low tip speed ratios, the effect of the J-shaped aerofoil on the overall and the dynamic start-up performances of the H-type VAWT has not been extensively studied. Therefore, for the first time, the present study is aimed at exploring the impact of the J-shaped aerofoil with different values of opening ratio on overall and dynamic start-up performance of the H-type VAWT considering different design parameters. The results show that a dynamic start-up model is needed to fully examine the self-starting capability of the J-shaped aerofoil instead of using calculated torque/power coefficients at the constant tip speed ratios. In addition, while the opening located at the inner surface of the aerofoil does not bring any benefit, the turbine self-starting ability increases with the increase in the opening ratio. Furthermore, there is a noticeable enhancement in the starting ability when the thicker NACA0018 aerofoil is employed, and the reversed version of the cambered aerofoils demonstrates a better self-starting capability compared to their original profiles. Additionally, the turbine with the J-shaped aerofoil having a slightly positive pitch angle (β=2°) has been found to have a better self-starting ability.
Keywords: J-shaped aerofoil; Self-starting; Vertical axis wind turbine; Computational fluid dynamics (CFD); Aerodynamics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222007848
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007848
DOI: 10.1016/j.energy.2022.123881
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().