District cooling substation design and control to achieve high return temperatures
Maria Jangsten,
Torbjörn Lindholm and
Jan-Olof Dalenbäck
Energy, 2022, vol. 251, issue C
Abstract:
Low return temperatures are a prevailing issue in district cooling systems negatively affecting operating costs and energy efficiency. In this study, three aspects of district cooling substation design and control were investigated with the aim to increase the return temperatures: 1) secondary supply temperature setpoint, 2) primary flow rate and 3) the flow rate relation between the primary and secondary flows. Two different control strategies limiting the secondary setpoint and the primary flow were tested in four buildings supplied by district cooling. Also, the secondary flow was measured along with an NTU analysis and predictions with a heat balance and a support vector regression model. The results showed the control strategies successfully increased the primary return temperature with 0.6–1.6 °C and eliminated flow in the saturation zone. The primary and secondary flows were shown to be unbalanced in fourteen of sixteen substations causing a low heat exchanger temperature effectiveness. The preferred method for predicting the secondary flow was support vector regression. The novelties of this paper are the conducted field tests and measurements with associated analyses, contributing with knowledge about the actual operation of district cooling substations and outcomes when implementing improvement measures to increase the primary return temperature.
Keywords: District cooling; Delta-T; Control strategy; Flow limitation; Setpoint limitation; Secondary flow (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222008167
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008167
DOI: 10.1016/j.energy.2022.123913
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().