Economic analysis of a proton exchange membrane electrolyser cell for hydrogen supply scenarios in Japan
Akira Yoshida,
Hiroto Nakazawa,
Naoki Kenmotsu and
Yoshiharu Amano
Energy, 2022, vol. 251, issue C
Abstract:
Hydrogen production using variable renewable energy surplus electricity that called Power-to-Gas is attracting attention as a grid stabilization technology. However, there is an issue that Power-to-Gas is low economically viable to use only for stabilizing of variable renewable energy output. The objective of this article is to evaluate the economic efficiency of the Power-to-Gas system based on the optimal operation strategies by using electricity from both an on-site photovoltaic system and an electric power exchange market, assuming a specific situation in Japan in the near future. The Power-to-Gas plant considered in this article consists of a 1 MW proton exchange membrane electrolyser cell, which has already started demonstration tests, a hydrogen storage tank, and a 3 MW photovoltaic system. An operational planning problem of the plant to optimize the annual hydrogen production schedule is formulated as a mixed-integer linear programming problem, and the economic efficiency is evaluated using the optimized unit price of hydrogen production as an evaluation index. The result shows that the hydrogen unit price is improved by using the power exchange market in addition to on-site photovoltaic due to the improvement of the utilization rate of cell. Case 1 with no constraints of hydrogen storage which has a large impact on hydrogen unit price marks 46.8 JPY/NM3 of the best hydrogen unit price, and Case 2-1, in which a fixed amount of hydrogen is produced continuously and transported by gas piping, improves 5.8 JPY/Nm3 of the hydrogen unit price compared to Case 2-2, in which batch transportation by a loader. From the sensitivity analysis of varying the depreciation cost of electrolyser cell and the price of the power market, it was concluded that the target unit cost of hydrogen production of less than 30 JPY/Nm3 can be obtained by decreasing the depreciation cost of the cell by 50% and the price of the market by 30%.
Keywords: Power-to-Gas; Proton exchange membrane electrolyser cell; Electric power exchange; Hydrogen; Photovoltaic (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222008465
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008465
DOI: 10.1016/j.energy.2022.123943
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().