Comparison of temporal resolution selection approaches in energy systems models
Cara Marcy,
Teagan Goforth,
Destenie Nock and
Maxwell Brown
Energy, 2022, vol. 251, issue C
Abstract:
Capacity expansion models for the power sector are used to project future decisions over the coming decades by simulating investment and operation decisions for the use of electricity. Due to model performance constraints, these models typically do not explicitly simulate every hour within a year, but instead simulate representative time segments (groups of hours). This paper evaluates different approaches for selecting time segments across three methods: sequential, categorical, and clustering, across a wide range of time-segment quantities, for a total of 204 temporal profiles. To measure the performance of each profile's ability to accurately represent data, the root-mean-square-error of each profile's time segments are compared to the data's original hourly data. The temporal alignment across regions is also measured (i.e., how often windy days align across regions). Different spatial resolutions were applied for a subset of the temporal selection methods to investigate the impact spatial resolution has on performance. This paper provides a framework for measuring the value of different temporal selection methods and of adding more granular data to energy system models. Overall, multi-criteria clustering yields the lowest root-mean-square-error across all datasets evaluated and provides a holistic view of the intertwined relationships between renewable generation and electricity demand.
Keywords: Energy system modeling; Temporal resolution; Electrical load; Renewable energy; Spatial resolution; Capacity expansion planning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222008726
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008726
DOI: 10.1016/j.energy.2022.123969
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().