Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station
Fanxi Meng,
Quan Zhang,
Yaolin Lin,
Sikai Zou,
Jiyao Fu,
Baochang Liu,
Wei Wang,
Xiaowei Ma and
Sheng Du
Energy, 2022, vol. 252, issue C
Abstract:
The increases in power density and energy consumption of 5G telecommunication base stations make operation reliability and energy-efficiency more important. In this paper, a novel type of rack-level hybrid cooling system which combines a thermosyphon loop with a mechanical refrigeration loop was developed and applied in two parallel cabinets installed different operating powers of the communication equipment. Its performance was tested on-site in a real 5G telecommunication base station in transitional season at Wuhan city, China. Thermal safety and energy consumption under the normal and urgent operation modes were evaluated. The results showed that under the normal daily operation mode 1, communication equipment can be cooled effectively, but the power usage effectiveness value reached 1.59. Under the urgent mode 7, communication equipment can maintain safe operation for over 20 min. In view of this, five novel energy-saving operation modes 2–6 were proposed and tested. The cooling effect and energy consumption under different modes were analyzed and compared. Under the thermosyphon mode 6, the cooling system can only meet the cooling demand for one side of the cabinet when the outdoor temperature is around 20 °C. Compared to mode 1, mode 5 was recommended due to the 7–9 °C lower operating temperature and 27.3% decrease of energy consumption.
Keywords: 5G telecommunication base station; Hybrid cooling system; Field study; Thermal safety (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222006478
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:252:y:2022:i:c:s0360544222006478
DOI: 10.1016/j.energy.2022.123744
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().