EconPapers    
Economics at your fingertips  
 

Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation

Elham Hormozi, Shuwen Hu, Zhe Ding, Yu-Chu Tian, You-Gan Wang, Zu-Guo Yu and Weizhe Zhang

Energy, 2022, vol. 252, issue C

Abstract: Energy efficiency is a critical issue in data centre management, which is the foundation for cloud computing. The VM placement has a considerable impact on a data centre's energy efficiency and resource utilisation. The assignment of VMs to PMs is an NP-hard problem without an easy way to find an optimal solution, particularly in large-scale data centres. In this study, the VM placement problem is formulated as a constrained optimisation problem. The Genetic Algorithm (GA) is a suitable method for solving this problem in terms of the quality of the solution. However, GA is time-consuming to obtain an optimal solution in the large scale optimisation problem. Therefore, this paper focuses on accelerated GA for energy-efficient VM placement. As the most time-consuming element of the GA is the calculation of its fitness function, this paper simplifies this calculation through a new fitness function in GA. Simulation results of small-, medium-, and large-scale data centres demonstrate that our accelerated GA is faster than the standard GA and gives better quality of solution than the First Fit Decreasing (FFD) algorithm, respectively. The findings of our GA with the new fitness function reveal an 8% energy saving for our GA compared to FFD and a 66% reduction in our GA execution time compared to the standard GA with standard energy formula as a fitness function. The number of generations in our GA is reduced by about 50% in comparison with the standard GA. Moreover, we started with 3000 PMs in the large-scale dataset, and only 1086 PMs were actually used after running our GA. Therefore, we may switch off far more PMs for energy savings from our GA results than those from the standard GA.

Keywords: Energy efficiency; Cloud computing; Data centre; Virtual machine placement; Fitness function; Genetic algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222007873
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:252:y:2022:i:c:s0360544222007873

DOI: 10.1016/j.energy.2022.123884

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222007873