Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd
Mulatu C. Gilago and
Chandramohan V.P.
Energy, 2022, vol. 252, issue C
Abstract:
Experimental investigations were carried out by drying ivy gourd slices to evaluate the performance of passive and active indirect type solar dryers (PITSD and AITSD) supported with a thermal energy storage unit. The PITSD was restructured with central processing unit fans powered by photovoltaic solar panels to form the AITSD. Performance parameters and drying kinetics were evaluated from the data recorded during experiments. The average values of heat supplied, activation energy and specific energy consumption of PITSD and AITSD were 735.9 and 761.2 W, 38.95 and 36.35 kJ/mol, and 00.228 and 0.265 kWh/kg, respectively. Average collector and drying efficiencies were 66.7 and 69.87%, and 13.15 and 15.2% for PITSD and AITSD, respectively. The mean values of effective diffusivity, specific moisture extraction rate, heat and mass transfer coefficients of PITSD and AITSD were 8.06 × 10−9 and 10.00 × 10−9 m2/s, 78 and 4.380 kg/kWh, 0.0041 and 0.0055 m/s, and 4.7 and 6.28 W/m2 K, respectively. Moisture diffusivity, heat and mass transfer coefficients were negatively related in a logarithmic trend with moisture content. The AITSD performed well as compared to the PITSD. Uncertainty analysis was made to ascertain the reliability of the outcomes.
Keywords: Active and passive dryers; Indirect solar drying; Collector and dryer efficiencies; Specific moisture extraction; Moisture diffusivity; Transfer coefficients (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422200901X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:252:y:2022:i:c:s036054422200901x
DOI: 10.1016/j.energy.2022.123998
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().