EconPapers    
Economics at your fingertips  
 

Identification of a supercritical fluid extraction process for modelling the energy consumption

Henri Hämäläinen and Mika Ruusunen

Energy, 2022, vol. 252, issue C

Abstract: Supercritical carbon dioxide extraction has been established as a promising and clean technology alternative to conventional separation techniques. Despite a high energy demand of extraction processes, their energy analysis has been scarcely considered. In this study, a supercritical carbon dioxide batch extraction process was modelled through system identification, forming a full simulator of its control loops affecting the energy consumption. The modelling was based on data acquired through systematic approach including experimental design and identification of dynamic process responses and energy consumption. Regression analysis and 12 identified models for subprocesses showed feasible performance during simulations with experimental data. The best local model for a subprocesses exhibited a Mean Absolute Percentage Error of 3% with independent test data. Regression model for steady-state electricity consumption showed a Mean Absolute Percentage Error of 7.6%, also suggesting the existence of nonlinearities between the response and other process variables. The identification approach reveals new information on energy consumption and dynamics of energy consumption of supercritical extraction in transient operating conditions. The models can be applied for further developments in real-time energy monitoring and optimization of supercritical extraction processes.

Keywords: Supercritical fluid extraction; System identification; Process simulation; Digital twin; Design of experiments; Energy modelling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222009367
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009367

DOI: 10.1016/j.energy.2022.124033

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009367