Multi-dimensions analysis of solar hybrid CCHP systems with redundant design
Xiaohui Yang,
Kang Liu,
Zhengyang Leng,
Tao Liu,
Liufang Zhang and
Linghao Mei
Energy, 2022, vol. 253, issue C
Abstract:
The combination of photovoltaic cells and cooling, heating, and power (PV–CCHP) systems has the characteristics of high energy efficiency, low pollutant emissions, and good economic benefits. PV-CCHP systems contain multiple types of equipment, and every kind of equipment may malfunction during operation. Redundant design can effectively improve the reliability and availability of systems. This paper compares and analyzes the redundantly designed PV-CCHP (RPV-CCHP) system, the multi-device parallel operation without redundancy design PV-CCHP (MPV-CCHP) system, and the single device operation PV-CCHP (SPV–CCHP) system performance in economy, environment, and energy. A two-stage optimization strategy is proposed on the traditional operation mode, and an office building in Beijing takes as the case study. The result shows that the integrated performance of the RPV-CCHP system is the best, followed by the MPV-CCHP system and, finally, the SPV-CCHP system. The primary energy saving ratio, carbon dioxide emission reduction ratio, and annual total cost saving ratio of the RPV-CCHP system are significantly superior to the MPV-CCHP and SPV-CCHP. Furthermore, a sensitivity analysis of the three systems was carried out to show how the integrated performance will change when electricity and natural gas prices change.
Keywords: Redundant design; Parallel system; Integrated performance; CCHP (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222009069
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009069
DOI: 10.1016/j.energy.2022.124003
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().