EconPapers    
Economics at your fingertips  
 

MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle

Hongwen He, Mo Han, Wei Liu, Jianfei Cao, Man Shi and Nana Zhou

Energy, 2022, vol. 253, issue C

Abstract: To improve the energy economy and speed tracking qualities of an unmanned electric vehicle (EV) having a dual-motor powertrain, this paper proposes a model predictive control (MPC) based longitudinal control strategy considering energy consumption. Firstly, an enhanced vehicle longitudinal dynamic model considering powertrain response performance is built as predictive model to guarantee the high precision and robustness of speed prediction. Secondly, pedal command is solved by an online activity set method aiming at minimizing speed tracking errors to realize fast and reliable real-time solving. Finally, an efficient energy management strategy (EMS) is developed to optimize the demand torque distribution and gear shifting. Acquiring these two quantities with an offline global optimization method, the strategy addresses frequent gear shifting problems by online adjusting gear shifting lines. The real-time performance of the proposed strategy is validated in a HIL test. Results show that the proposed MPC-based strategy improves the speed tracking accuracy by 58.93% and expands the high efficiency range of powertrain by 40.93%. The equivalent electric consumption of the EV is reduced by 9.29%. This study provides a foundation for the practical application of longitudinal control algorithms on EVs in the future.

Keywords: Longitudinal control strategy; Model predictive control; Electric vehicle; Torque distribution strategy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222009070
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009070

DOI: 10.1016/j.energy.2022.124004

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009070