Dynamic simulation of natural gas pipeline network based on interpretable machine learning model
Dengji Zhou,
Xingyun Jia,
Shixi Ma,
Tiemin Shao,
Dawen Huang,
Jiarui Hao and
Taotao Li
Energy, 2022, vol. 253, issue C
Abstract:
Natural gas pipeline network modeling and simulation is the basis of dispatch and design. Modeling methods based on the mechanistic model have for a long time been facing the problem of multi-parameters and multi-flow patterns that are difficult to determine. Additionally, the method of purely machine learning has the problems of poor interpretability and difficulty in optimizing the model. A novel dynamic simulation method based on an interpretable shortcut Elman network (Shortcut-ENN) model for the pipeline network is proposed. The Shortcut-ENN model is derived from the state space equations. Based on the Shortcut-ENN model, the connection relationship and mechanism characteristics of the pipeline are retained, and an interpretable machine learning pipeline network model is constructed to make up for the lack of mechanism modeling. The model fully adopts the mechanism knowledge and is very suitable for optimization, which greatly improves robustness of the model. Validated and compared with long short-term memory model, the results show that MSE, MAE, R2, and EV of the proposed Shortcut-ENN-based model considering embedded pipeline mechanism and compressor constraints are improved approximately 84.4%, 60.1%, 0.75%, and 53.3%, respectively, and the R2 is about larger than 0.99, and the EV is about less than 0.02.
Keywords: Interpretability; Machine learning; Shortcut-ENN; State-space model; Natural gas pipelines; Dynamic simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222009719
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009719
DOI: 10.1016/j.energy.2022.124068
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().