EconPapers    
Economics at your fingertips  
 

Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity

Lingyi Guo, Li Chen, Ruiyuan Zhang, Ming Peng and Wen-Quan Tao

Energy, 2022, vol. 253, issue C

Abstract: Enhancing oxygen transport and reducing water flooding in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important for improving cell performance. In this study, a pore-scale model based on the lattice Boltzmann method is proposed, which considers two-phase flow, oxygen diffusion and electrochemical reaction in the GDL. The invasion speed of the water into the GDL is determined by the water generation rate and correspondingly the oxygen consumption rate. The model is then adopted to study effects of wettability and porosity distribution on the liquid water saturation, oxygen concentration and current density. The results demonstrate that while reducing the total saturation in the GDL is important, decreasing the local saturation near the microporous layer (MPL)/GDL interface is also crucial for enhancing cell performance. It is found that GDL with locally enhanced hydrophobicity at the MPL/GDL interface or gradually increased porosity from the GDL bottom to the GDL top can improve cell performance. Particularly, by delicately designing the GDL porosity, the current density can be considerably increased by 201%. The developed pore-scale model provides a useful tool for understanding the underlying multiphase reactive transport processes in GDL and designing the microscopic structures of GDL.

Keywords: Proton exchange membrane fuel cell; Lattice Boltzmann method; Water flooding; Mass transfer; Wettability; Gradient porosity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222010040
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010040

DOI: 10.1016/j.energy.2022.124101

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010040