EconPapers    
Economics at your fingertips  
 

Comparative study on cooling method for concentrating photovoltaic system

Yishuang Ji, Song Lv, Zuoqin Qian, Yitong Ji, Juwen Ren, Kaiming Liang and Shulong Wang

Energy, 2022, vol. 253, issue C

Abstract: Concentrating photovoltaic technology has been one of the important technologies among renewable energy technologies. Researchers have used one or more cooling methods to increase the output power by cooling the CPV cells. In this work, CPV systems with three typical cooling methods of air cooling, water cooling and heat pipe cooling have been comparatively studied. An Outdoor experiment was conducted under the same environmental conditions. The pump power loss factor was considered to evaluate the thermal and electrical performance of the three systems. The experimental results indicate that the average temperatures of the finned heatsink, water cooling module, and heat pipe during the test are 41 °C, 25.9 °C and 22.2 °C, respectively. The CPV cell with heat pipe cooling method exhibits the highest output power of 8.27 W. When the pump consumption is considered, the water-cooled CPV cell can provide the highest net electrical efficiency of 28.3% and electrical exergy efficiency of 30.4%. In addition, a thermal-electrical coupling model was established to investigate the effects of different parameters, such as inlet fluid temperature, mass flow rate and concentration ratio on CPV system. The results can provide some practical guidelines for the design and application of practical CPV cooling systems.

Keywords: Concentrating photovoltaic; Heat exchanger; Numerical analysis; Pump consumption; Electrical exergy efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222010295
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010295

DOI: 10.1016/j.energy.2022.124126

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010295