Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives
Mohamed G. Gado,
Shinichi Ookawara,
Sameh Nada and
Hamdy Hassan
Energy, 2022, vol. 253, issue C
Abstract:
An assessment of the cascade adsorption-compression refrigeration system by adopting renewable energy for cold storage applications based on energy, exergy, exergoeconomic, and enviroeconomic perspectives is presented. The cascade cycle aims to dwindle the electric power of the compression subcycle with reduced condensation pressure. The thermodynamic modeling of the proposed system is developed at climatic conditions of Alexandria/Egypt for two scenarios of renewable systems, including (i) biomass-solar (Scenario-I) and (ii) biomass-solar-wind (Scenario-II). The results demonstrate that the COP of the cascade system is ameliorated by 41.6% compared to the conventional compression system; highlighting an energy saving of 42%. The proposed system has an annual average COP and exergetic efficiency of 0.122 and 1.78%, respectively for Scenario-I and 0.124 and 1.8%, respectively for Scenario-II. Scenario-I and Scenario-II deliver refrigeration at 0.235 $/kWh, and 0.237 $/kWh, respectively. Herein, the exergoeconomic parameter for Scenario-I and Scenario-II is 0.70 kWh/$ and 0.69 kWh/$, respectively. It is found that both scenarios alleviate about 32.75 and 5.35 tons of CO2 per annum based on environmental and exergoenvironmental standpoints, respectively. Besides, the enviroeconomic and exergoenvironmental parameters are about 474.90 $/kW and 77.60 $/kW respectively, over the project lifespan of 20 years for both scenarios.
Keywords: Adsorption-compression cascade system; Renewable energy; Energy; Exergy; Exergoeconomic; Environmental (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222010301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010301
DOI: 10.1016/j.energy.2022.124127
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().