EconPapers    
Economics at your fingertips  
 

A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction

Wei Sun and Junjian Zhang

Energy, 2022, vol. 253, issue C

Abstract: Carbon trading is an important market mechanism to promote carbon emission reduction and clean development. Accurate carbon price prediction is significant for environmental policymaking and improvement of carbon market efficiency. However, the existence of end effect and chaotic characteristics of carbon price sequence have limited the improvement of carbon price prediction accuracy. In this paper, a novel carbon price prediction model is proposed, which is based on local characteristic-scale decomposition (LCD), phase space reconstruction (PSR) and least square support vector machine (LSSVM) optimized by artificial fish swarm algorithm (AFSA). Firstly, carbon price is decomposed into several intrinsic scale components (ISC) by LCD to capture carbon price characteristics. Secondly, the maximum Lyapunov exponent is used to detect the chaos of the intrinsic scale components, and the chaotic ISC is further reconstructed by phase space reconstruction (PSR). In the meantime, the influence variables of non-chaotic ISCs are selected through partial autocorrelation analysis. Finally, the LSSVM optimized by AFSA is established to predict the ISC components of carbon price series and the ISC components are combined into carbon price prediction results. The empirical analysis shows that LCD-PSR-AFSA-LSSVM model has better prediction accuracy than Comparison models, and the MAPE values of the three carbon markets are 1.23%, 1.49% and 3.27%, respectively. The results suggest that the LCD-PSR-AFSA-LSSVM model is validity, generalization and stability. The application of the model will improve the operation efficiency of carbon market trading and advance clean development of various industries.

Keywords: Carbon price prediction; Local characteristic-scale decomposition; Intrinsic scale component; Phase space reconstruction; Artificial fish swarm algorithm; Least square support vector machine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222010702
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010702

DOI: 10.1016/j.energy.2022.124167

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010702