Experimental investigations on heat transfer of CO2 under supercritical pressure in heated horizontal pipes
Konstantinos Theologou,
Rainer Mertz,
Eckart Laurien and
Jörg Starflinger
Energy, 2022, vol. 254, issue PA
Abstract:
This publication provides a dataset of 54 experiments, carried out with supercritical CO2 (sCO2) in two heated horizontal pipes with inner diameters of 4 and 8 mm at a pressure of approximately 7.75 MPa. The mass fluxes were set to 400 and 800 kg/m2s and the heat flux was varied from 30 to 130 kW/m2, resulting in a heat to mass flux ratio of 38–225 J/kg. The influences of the inner pipe diameter, the Reynolds number and the heat to mass flux ratio on the thermal stratification were studied. Temperature differences up to 90 K between the bottom and the top of the pipe have been detected. By varying the bulk fluid inlet temperature, the thermal inflow lengths have been quantified for a fully developed temperature stratification with up to 180 inner pipe diameters. The Petukhov and Richardson buoyancy criteria show that the experimental results are strongly influenced by buoyancy. For the Jackson buoyancy criterion, a new threshold of higher than 160 is proposed. The validation of four empirical Nusselt correlations shows that the Bishop correlation has the lowest total average deviation of 52%, especially for the bottom site of both pipes with an average deviation of 29%.
Keywords: Supercritical CO2; Heat transfer; Temperature stratification; Buoyancy; Flow acceleration; Thermal inflow length (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422201074X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pa:s036054422201074x
DOI: 10.1016/j.energy.2022.124171
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().