Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas
Adam Smoliński,
Karolina Wojtacha-Rychter,
Magdalena Król,
Małgorzata Magdziarczyk,
Jarosław Polański and
Natalia Howaniec
Energy, 2022, vol. 254, issue PA
Abstract:
The gasification technology of refuse-derived fuels (RDF) can represent a future alternative to the global hydrogen production and a pathway for the development of the circular economy. The paper presents an innovative way of utilizing RDF through their oxygen/steam co-gasification with bituminous coal to hydrogen rich gas. Five different RDF samples (RDF1÷RDF5) were investigated. The in-depth analyses of the co-gasification of bituminous coal blends with different amounts of RDF (10, 15 and 20%w/w) under various temperature conditions were conducted with the application of Hierarchical Clustering Analysis (HCA). The results of the research study revealed a decrease in the total gas yield as well as in the hydrogen yield observed with the increase in the RDF fraction in the fuel blend. The lowest hydrogen yield and the highest carbon conversion were noted for the co-gasification tests of coal blends with 20%w/w for all the studied RDFs. The SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) and WDXRF (Wavelength Dispersive X-ray Fluorescence) results showed a significantly higher H2 yield in RDF2 co-gasification with coal in comparison with all the remaining RDFs, due to the higher concentration of calcium in the sample. The molecular structure analysis of polymers using Fourier transform infrared spectroscopy (FTIR) demonstrated that the most prevalent synthetic polymers in RDF2 are polyethylene terephthalate and polyvinyl chloride characterized by the lowest thermal stability compared to polyethylene and polypropylene.
Keywords: RDF co-gasification; Hierarchical clustering analysis (HCA); SEM-EDS; FTIR (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222011136
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011136
DOI: 10.1016/j.energy.2022.124210
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().