EconPapers    
Economics at your fingertips  
 

A fast and accurate modeling approach for water and steam thermodynamics with practical applications in district heating system simulation

Kathryn Hinkelman, Saranya Anbarasu, Michael Wetter, Antoine Gautier and Wangda Zuo

Energy, 2022, vol. 254, issue PA

Abstract: In U.S. district heating (DH) systems, steam is the most common heat transport medium. Industry demand for new advanced modeling capabilities of complete steam DH systems is increasing; however, the existing models for water/steam thermodynamics are too slow for large system simulations because of computationally expensive algebraic loops that require the solution to nonlinear systems of equations. For practical applications, this work presents a novel split-medium approach that implements numerically efficient liquid water models alongside various water/steam models, breaking costly algebraic loops by decoupling mass and energy balance equations. New component models for steam DH systems are also presented. We implemented the models in the equation based Modelica language and evaluated accuracy and computing speed across multiple scales: from fundamental thermodynamic properties to complete districts featuring 10 to 200 buildings. Compared to district models with the IF97 water/steam model and equipment models from the Modelica Standard Library, the new implementation improves the scaling rate for large districts from cubic to quadratic with negligible compromise to accuracy. For an annual simulation with 180 buildings, this translates to a computing time reduction from 33 to 1–1.5 h. These results are critically important for industry practitioners to simulate steam DH systems at large scales.

Keywords: Steam; District heating; Computing speed; Modeling; Simulation; Modelica (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222011306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011306

DOI: 10.1016/j.energy.2022.124227

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011306