EconPapers    
Economics at your fingertips  
 

Heat extraction capacity and its attenuation of deep borehole heat exchanger array

Fangfang Zhang, Mingzhi Yu, Bjørn R. Sørensen, Ping Cui, Wenke Zhang and Zhaohong Fang

Energy, 2022, vol. 254, issue PA

Abstract: A model is proposed to analyze the heat transfer of deep borehole heat exchanger (DBHE)arrays. Based on this, a dimension reduction algorithm is proposed for the numerical simulation of heat transfer of DBHE arrays, which can improve calculation speed by several orders of magnitude compared with that by the CFD software. An index of heat extraction capacity (HECI) is adopted to evaluate the heat extraction capacity of DBHE arrays. The influence of borehole spacing, operation time, annual heating duration, terrestrial heat flow rate, borehole depth, soil thermal parameters, pipe diameter and circulating fluid flow rate on DBHE array heat extraction capacity and its attenuation are analyzed. The results show that the borehole spacing, operation time, and annual heating duration all have apparent influence on DBHE array heat extraction capacity and its attenuation rate, while the others only have apparent influence on the heat extraction capacity. According to the calculation results, when the DBHE arrays have a service lifetime of 20–50 years, the recommended borehole spacing range is 40–70 m.

Keywords: Deep borehole heat exchanger array; Heat transfer model; Numerical simulation; Heat extraction capacity; Attenuation of heat extraction capacity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013330
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222013330

DOI: 10.1016/j.energy.2022.124430

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222013330