The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study
Jian Chen,
Ye Song,
Yueyang Yu,
Guoqing Xiao,
Wai Cheong Tam and
Depeng Kong
Energy, 2022, vol. 254, issue PB
Abstract:
For a typical thermal runaway process of uncontrolled energy release, pool fires are typically associated with the safety of energy application in modern production and life. In order to improve fire safety in energy utilization, it is significant to investigate the burning behavior of pool fire incorporating burning rate and flame characteristic, which are fundamental parameters in hazard prediction and risk management. Although there are different obstructions in real industrial fire scenarios, nearly no work has been conducted to explore the influence of obstruction on pool fires. Aiming at characterizing the influence of a plate obstacle on pool fire, a series of small-scale pool fires affected by plate obstacle are performed. The findings show the plate obstacle above the burner has a considerable effect on the burning behaviors of n-heptane and ethanol pool fires. The plate obstacle over the burner would result in a rapidly developing fire with higher burning rate. The external radiation from plate obstacle to the fuel surface was found to be responsible for the burning rate enhancement through the heat transfer analysis. Furthermore, based on the theoretical and scaling analysis, a new correlation for burning rate is proposed to describe the effect of plate obstacle, and the relationship between mean radiation heat flux and the characteristics of plate obstacle is revealed. It is expected this work will help to understand the burning behavior of pool fires in a more realistic fire setting.
Keywords: Pool fire; Plate obstacle; Burning behavior; Burning rate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222011264
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011264
DOI: 10.1016/j.energy.2022.124223
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().