Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions
Jiangkuan Li,
Meng Lin,
Yankai Li and
Xu Wang
Energy, 2022, vol. 254, issue PB
Abstract:
The performance of data-driven nuclear power plant fault diagnosis models trained by limited data cannot be guaranteed, the distribution discrepancy between training set (source domain) and test set (target domain) caused by varying operating conditions will seriously restrict their practical applications. To generalize the diagnostic knowledge learnt from labeled source domain to unlabeled target domain, a novel transfer learning method based on Maximum Mean Discrepancy (MMD) and Convolutional Neural Network (CNN) is proposed, which can reduce the domain discrepancy of the extracted features between source domain and target domain, by appending the MMD-based distribution discrepancy to the objective function of CNN. Numerical experiments with high-dimensional and strong-nonlinear complex nuclear power plant simulation data are conducted, results show that significant improvement in the diagnostic accuracy of target domain can be achieved on most transfer tasks. Besides, the influence of adopting different kernel functions (Linear kernel, Sigmoid kernel, Laplace kernel and Gaussian kernel) to calculate MMD is also studied, better transfer effect can be achieved when Gaussian kernel is used, including higher accuracy, faster convergence rate and less negative transfer. Overall, the proposed method is promising to expand the application scope of nuclear power plant intelligent fault diagnosis to varying operating conditions.
Keywords: Fault diagnosis; Nuclear power plants; Transfer learning; Maximum mean discrepancy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222012610
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012610
DOI: 10.1016/j.energy.2022.124358
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().