EconPapers    
Economics at your fingertips  
 

Using agricultural demand for reducing costs of renewable energy integration in India

Tarun M. Khanna

Energy, 2022, vol. 254, issue PC

Abstract: While demand response is recognized as a useful tool for integrating renewable electricity, the related literature in developing countries has been limited. Meanwhile, the literature on demand side management (DSM) has ignored the value of agricultural demand as a demand side resource for integration of renewable energy. This article fills the gap by collecting agricultural load data from two distribution utilities in the Indian state of Gujarat and using it in a mixed-integer linear programming model to estimate the flexibility provided by agricultural DSM to the power system. Using a flexible load representation, the model chooses the optimal periods for agricultural supply subject to the constraints of meeting the irrigation needs of farmers and the marginal cost of electricity. This analysis shows that management of agricultural demand already reduces system costs by 4% or USD 6.09 per MWh of agricultural consumption. Going forward, with high shares of solar generation, shifting agricultural demand to daytime hours increases system flexibility. It reduces renewables curtailment by 4–7%, limits cycling costs of coal power plants, and reduces system integration costs by 22%. Agricultural DSM could be a cost-effective flexibility option in developing countries where only the least-cost options are economically viable.

Keywords: Demand side management; Power system modelling; Renewable energy integration; Load control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222012889
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222012889

DOI: 10.1016/j.energy.2022.124385

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222012889