A novel seasonal segmentation approach for day-ahead load forecasting
Abhishek Sharma and
Sachin Kumar Jain
Energy, 2022, vol. 257, issue C
Abstract:
Day-ahead load forecasting plays a crucial role in operation and management of power systems. Weather conditions have a significant impact on daily load profile, hence, it follows an almost similar pattern within a season. However, it varies markedly across the seasons. Existing literature on load forecasting adopts a very casual approach in considering the seasonality, based on either calendar month or some meteorological parameter, which is inconsistent and inaccurate, especially during transition periods, thus leading to high forecasting errors. This paper proposes a novel seasonal segmentation approach for day-ahead load forecasting that uses multiple bidirectional Long Short Term Memory (LSTM) networks. An index has been derived from various weather parameters that govern the selection of seasonal models for forecasting purposes. Weighted output from multiple seasonal models is also possible in special cases for better forecasting accuracy. The proposed seasonal segmentation approach avoids the need for frequent model retraining and results in a better forecast accuracy with a relatively simple LSTM structure. The performance of the proposed method has been validated and compared on the actual load data of Madhya Pradesh state (MP), India. The improved results suggest that the proposed approach can be applied reliably for load scheduling applications.
Keywords: Attention mechanism; Deep learning; Load scheduling; Long short-term memory; Short-term load forecasting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222016553
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016553
DOI: 10.1016/j.energy.2022.124752
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().