EconPapers    
Economics at your fingertips  
 

Synthesis of refinery desulfurization solvent network with multi-stage solvent regeneration

Zhendong Li, Minbo Yang and Xiao Feng

Energy, 2022, vol. 257, issue C

Abstract: Increasing process of sour crude oil and demand of low-sulfur oil products expand the desulfurization units in refineries, which raises the desulfurization solvent circulation as well as the energy cost for solvent regeneration. In this work, synthesis of desulfurization solvent network with multi-stage solvent regeneration is investigated to reduce the energy cost. Firstly, this work presents superstructures for desulfurization solvent network with regeneration considering one-stage structure, two-stage cascaded structure, and two-stage parallel structure, respectively. Next, mathematical models for the three cases are formulated as nonlinear programming problems where the objective function aims to minimize the total energy consumption. Finally, a case study is conducted to illustrate the proposed method. The results show that the two-stage structures reduce more energy costs than the one-stage structure by 7.65% and 8.46%, respectively, which means that two-stage regeneration is more attractive. Besides, the parallel structure is better than the cascaded structure, because the energy requirement for solvent regeneration is more sensitive to the outlet concentration of hydrogen sulfide than the inlet concentration.

Keywords: Desulfurization solvent network; Two-stage regeneration; Energy consumption; Nonlinear programming (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222016851
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016851

DOI: 10.1016/j.energy.2022.124782

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016851