EconPapers    
Economics at your fingertips  
 

State of health estimation for lithium-ion battery based on energy features

Dongliang Gong, Ying Gao, Yalin Kou and Yurang Wang

Energy, 2022, vol. 257, issue C

Abstract: There is a recognized need to forecast lithium-ion batteries' state of health (SOH) to guarantee their safety and reliability. However, the selected health indicators highly influence the prognostics accuracy of SOH. This paper's primary purpose is to assess the applicability and prediction accuracy of the proposed energy features-based SOH estimation model for different lithium-ion batteries under varied charging and discharging scenarios. These health indicators are energy in the constant current (CC) charging phase, constant voltage (CV) charging stage, and energy in the equal discharge voltage interval (EDVI). The proposed SOH estimation model employs a machine learning algorithm based on Gaussian process regression (GPR). The validation scheme utilizes two data training modes. In addition, data sets from MIT, CALCE, NASA, and Oxford containing different charge and discharge conditions and lithium-ion battery types are adopted. The experimental results reveal that the prediction errors are less than 0.5% for both training modes, while the coefficient of determination (R2) is more than 97%. In addition, 95% of tested cells had an R2 value of more than 98%. This research suggests that the proposed energy feature-based SOH estimation model has high prediction accuracy and excellent generalization ability.

Keywords: Lithium-ion battery; Energy-based features; SOH estimation; Machine learning; Generalization capability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017157
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:257:y:2022:i:c:s0360544222017157

DOI: 10.1016/j.energy.2022.124812

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222017157