Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test
Tiankuo Chu,
Qinpu Wang,
Meng Xie,
Baoyun Wang,
Daijun Yang,
Bing Li,
Pingwen Ming and
Cunman Zhang
Energy, 2022, vol. 258, issue C
Abstract:
This paper reports on 3-cell PEMFC stack durability test of 2500 h in dynamic conditions and different recovery procedures. After electrochemical impedance spectroscopy (EIS) analysis, it was determined that the primary cause of the stack performance degradation is the oxidation of platinum (Pt), which is reversible. The air starvation operation reduced the cathode voltage to less than 0.2 V, part of PtO was reduced, and the stack performance loss was partially recovered. However, the recovery of the three cells varies due to defects in the three-cell stack and uneven gas distribution. The fast load-up operation brought the short-term severe air starvation of the three cells to a similar level, the remaining platinum oxide (PtO) was fully reduced, the stack performance improved again, and the voltage consistency of the three cells was restored significantly. With the optimization of operating parameters and combined recovery procedures, the average degradation rate of the stack voltage is 3.08 μV/h within 2500 h. The results indicated that our combined strategy is of huge importance to mitigate the reversible performance degradation and significantly extend the service life of PEMFC stack and be a very appropriate procedure used in laboratories and systems.
Keywords: PEMFC stack; Durability; Reversible degradation; Recovery procedure (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222016504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016504
DOI: 10.1016/j.energy.2022.124747
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().