Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change
Fangliang Zhong,
John Kaiser Calautit and
Yupeng Wu
Energy, 2022, vol. 258, issue C
Abstract:
The effect of climate change on heating, ventilation and airconditioning (HVAC) system performances has become prominent, and HVAC fault impacts may also vary with climate change. This paper evaluates the impacts of HVAC operational faults on system energy and occupant thermal comfort under the current, 2030s and 2050s climates using a validated model. The energy and thermal comfort impact indicators were proposed to rank single and multiple faults under each climate period. Supply fan stuck at maximum speed, and the combinations associated with this fault were ranked first in energy and thermal comfort rankings, respectively. Based on the investigations of multiple faults interactions, it is found that the synergetic/antagonistic effect of multiple faults combinations can lead to a significantly higher/lower combined impact than any single fault impact among the combination when the single faults present opposite impacts. Moreover, heating coil supply air temperature sensor negative bias, and the combination of thermostat positive offset and outdoor air damper stuck fully open led to the most increase system total electricity by 34.3 GJ and 35.3 GJ from current to 2050s period. The results are useful for researchers to prioritise the faults with significant impacts for developing fault detection and diagnosis framework.
Keywords: Fault impact analysis; Multiple faults; HVAC; Future climate scenarios; Building performance simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222016656
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016656
DOI: 10.1016/j.energy.2022.124762
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().