Combustion, emissions, and performance of natural gas–ammonia dual-fuel spark-ignited engine at full-load condition
Sechul Oh,
Cheolwoong Park,
Junho Oh,
Seonyeob Kim,
Yongrae Kim,
Young Choi and
Changgi Kim
Energy, 2022, vol. 258, issue C
Abstract:
In the present study, the full load performance and emission characteristics of natural gas-ammonia dual fuel engine were investigated using the experimental methodologies with three approaches. An 11–l, 6-cylinder turbocharged natural gas engine was used in the experiments and combustion parameters, such as the energy fraction of ammonia, the air-fuel ratio, and the ignition timing, were varied to assess the effect of the introduction of ammonia as a fuel. The experiments are conducted at 1100 rpm and 1000 Nm of brake toque, which is representing the maximum torque. The effect of volumetric fuel flow rate is examined in the consideration of using a certain fuel supply system. A constant flow rate of the intake air condition was evaluated under a maximum brake torque operation condition. Lastly, the thermal efficiency and exhaust gas emissions were observed with varying the air-fuel ratio at 15% of ammonia energy fraction. The experimental results showed that using the existing fuel supply system could not secure the required brake torque and the insufficient time for the complete combustion of natural gas-ammonia mixture resulted in the increase in instability and unburned fuel of combustion. Fuel NOx was dominant of NOx emissions with the introduction of ammonia.
Keywords: Ammonia; Maritime engine; Natural gas; Spark-ignition engine; Nitrogen oxides; Combustion duration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017406
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017406
DOI: 10.1016/j.energy.2022.124837
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().