EconPapers    
Economics at your fingertips  
 

Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest

Guangcai Tan, Nan Xu, Dingxue Gao and Xiuping Zhu

Energy, 2022, vol. 258, issue C

Abstract: Hydrogels can be employed to recover salinity gradient (SG) energy as they can exhibit reversible swelling and shrinking behaviors in alternate freshwater and sea water. The swelling ratio and mechanic property of hydrogels are essential for the SG energy harvest. Herein, different amounts of graphene oxide (GO) or carbon nanotube (CNT) were successfully introduced to the matrix of poly(acrylic acid-co-acrylamide) (PAAM) hydrogels. Compared to the original PAAM hydrogels, both the swelling property and mechanic strength of the GO/CNT hybrid PAAM hydrogels were significantly enhanced. Although the CNT/PAAM hydrogels exhibited relatively higher swelling ratio (1578 g g−1) than that of GO/PAAM (1423 g g−1), the highest SG energy recovery was obtained by using GO/PAAM hydrogels (7.07 J g−1). The reason was due to the better mechanical strength of GO/PAAM hydrogels, which resulted from the covalent bonds between the extensive oxygenated functional groups in GO and the polymeric chains. Moreover, excellent reproducibility was observed with GO/PAAM hydrogels over 10 cycles because of their highly structure integrity. These results demonstrated that GO/CNT hybrid hydrogels are efficient for SG energy recovery attributed to the high swelling ability as well as the strong mechanical property.

Keywords: Poly(acrylic acid-co-acrylamide) hydrogel; Hybrid hydrogel; Salinity gradient energy; Graphene oxide; Carbon nanotube (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017467
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017467

DOI: 10.1016/j.energy.2022.124843

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017467