A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings
Xiangfei Liu,
Mifeng Ren,
Zhile Yang,
Gaowei Yan,
Yuanjun Guo,
Lan Cheng and
Chengke Wu
Energy, 2022, vol. 259, issue C
Abstract:
The development of the building energy management systems (BEMS) enable users to intelligently control Heating, Ventilation, Air-conditioning and Cooling (HVAC) systems based on digital information. In order to reduce the power consumption cost of the HVAC system while ensuring user satisfaction, a novel HVAC control system for building system based on a multi-step predictive deep reinforcement learning (MSP-DRL) algorithm is proposed in this paper. In the proposed method, the outdoor ambient temperature is predicted first by a featured deep learning method named GC-LSTM, where the Long Short-term Memory (LSTM) is enhanced by the generalized correntropy (GC) loss function to deal with the non-Gaussian characteristics of the collected outdoor temperature. In addition, the proposed temperature prediction model is combined with a reinforcement learning algorithm named Deep Deterministic Policy Gradient (DDPG) aiming to flexibly adjust the output power of the HVAC system under the dynamic changing of electricity prices. Finally, comprehensive simulation based on real world data is delivered. Numerical results show that the GC-LSTM algorithm is more accurate than other counterparts prediction algorithms, and the proposed HVAC control system based on the multi-step prediction deep reinforcement learning algorithm is effective and could save over 12% cost compared to other approaches, where the user comfort is maintained simultaneously.
Keywords: HVAC system; Multi-step prediction; Deep reinforcement learning; Generalized correntropy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017601
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017601
DOI: 10.1016/j.energy.2022.124857
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().