EconPapers    
Economics at your fingertips  
 

Performance evaluation of a concatenated stepped solar still system loaded with different masses of energy storage material

Rahul Grewal and Mahesh Kumar

Energy, 2022, vol. 259, issue C

Abstract: The influence of mass of paraffin wax as energy storage material (ESM) on solar distillation in a concatenated stepped solar still system (CS4) is investigated by considering its productivity, thermal, economic and environmental aspects. Experiments are carried out on CS4 loaded with 675 g, 1350 g, and 2700 g of paraffin wax as ESM, filled in 15, 30 and 60 numbers of copper tubes, respectively. CS4 containing 15, 30 and 60 numbers of copper tubes are symbolically represented as CS4-ESM15, CS4-ESM30 and CS4-ESM60, respectively. The amount of distillate obtained from CS4 is observed to increase with the mass of ESM, and CS4-ESM60 gives maximum distillate of 2486.1 g CS4-ESM60 is found to be thermally more efficient among the tested systems with maximum average values of convective and evaporative heat transfer coefficients as 4.17 and 34.16 W/m2oC, respectively. Its overall energy efficiency is 86.57% which is respectively, 74.22% and 45.86% higher than those of CS4-ESM15 and CS4-ESM30. The overall exergy efficiency is also evaluated maximum for CS4-ESM60 as 3.53%. The carbon credits earned and CO2 mitigation by CS4-ESM60 are $132.4 and 8.83 tonnes, respectively that makes it ecologically friendlier. Also CS4-ESM60 is found economical with total productive cost of $101.21/year.

Keywords: Solar distillation; Energy recovery; Energy storage; Concatenated stepped solar still system; CO2 mitigation; Carbon credits earned (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222019028
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019028

DOI: 10.1016/j.energy.2022.125005

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019028