EconPapers    
Economics at your fingertips  
 

Pyrolysis characteristics, gas products, volatiles, and thermo–kinetics of industrial lignin via TG/DTG–FTIR/MS and in–situ Py–PI–TOF/MS

Xiankun Huang, Hongchao Yin, Hu Zhang, Ning Mei and Lin Mu

Energy, 2022, vol. 259, issue C

Abstract: The lignosulfonates and de–alkalized lignin pyrolysis characteristics were evaluated by using TG/DTG–FTIR/MS and in–situ Py–PI–TOF/MS. TG/DTG experiments showed that lignin sample pyrolysis proceeded in three stages from 303.15 to 1173.15 K, and the thermographs shifted to higher temperatures with increasing heating rate. Gases MS analysis showed that the pyrolysis of sodium lignosulfonate produced more CH4 and CO2 than the pyrolysis products of calcium lignosulfonate and de–alkalized lignin. The escape temperature of volatile matter in the lignin samples were basically consistent with the order of its organic content, but there were obvious differences in product composition. The escape peak temperature of olefins, aromatics, monophenols, and bisphenols showed a decline trend with the increase of substituent carbon number. The sample pyrolysis thermo–kinetics was estimated by Coats–Redfern, FWO, KAS, and integral Master–plots methods. The activation energies were 66.74–678.20 kJ mol−1 (calcium lignosulfonate) > 32.24–598.38 kJ mol−1 (sodium lignosulfonate) > 44.27–265.69 kJ mol−1 (de–alkalized lignin). The most potential kinetic models were not all consistent with the standard curves for the stages of sample pyrolysis. This study provides theoretical and practical guidance for solving the engineering problems of lignin wastes pyrolysis in papermaking wastewater.

Keywords: Lignin wastes; Pyrolysis; Thermo–kinetics; Py–PI–TOF/MS; Integral Master–plots method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222019570
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019570

DOI: 10.1016/j.energy.2022.125062

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019570