Forecasting monthly gas field production based on the CNN-LSTM model
Wenshu Zha,
Yuping Liu,
Yujin Wan,
Ruilan Luo,
Daolun Li,
Shan Yang and
Yanmei Xu
Energy, 2022, vol. 260, issue C
Abstract:
Accurate prediction of gas field production is an important task for reservoir engineers, which is challenging due to many unknown reservoir parameters. Aiming to have a low-cost, intelligent, and robust method to predict gas and water production for a given gas reservoir, this paper proposes a CNN-LSTM model to predict gas field production based on a gas field in southwest China. The convolutional neural network (CNN) has a feature extraction ability, and the long short-term memory network (LSTM) can learn sequence dependence. By the combination of the two abilities, the CNN-LSTM model can describe the changing trend of gas field production. A new prediction strategy named partly unknown recursive prediction strategy (PURPS) is proposed that some input features are estimated using the predicted gas and water production according to known equations. The results show that the CNN-LSTM model can effectively predict gas field production. A detailed performance comparison was conducted between CNN-LSTM and other models. The comparison shows that the proposed CNN-LSTM model outperforms the existing methods. The monthly gas production average MAPE errors of the three different stages are CNN-LSTM (7.7%), RNN (18%), Random Forest (23.17%), ARIMA (25.3%), DNN (28.3%), Support Vector Machine (28.3%), CNN (41%), and LSTM (46%).
Keywords: Monthly production of the gas field; Partly unknown recursive prediction strategy; Bagging; Convolution neural network; Long short-term memory network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:260:y:2022:i:c:s0360544222017923
DOI: 10.1016/j.energy.2022.124889
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().