Economics at your fingertips  

Tracking embodied energy flows of China's megacities via multi-scale supply chains

Quanzhi Xia, Mengyao Han, Shihui Guan, Xiaofang Wu and Bo Zhang

Energy, 2022, vol. 260, issue C

Abstract: Urban energy requirements not only involve energy supplies within self-boundaries, but also impose huge demands via domestic and global supply chains. By constructing a multi-scale input-output model, this study depicts embodied energy uses of China's four megacities including urban, national, and global scales. The total embodied energy requirements of Beijing, Tianjin, Shanghai, and Chongqing are 8576.61, 6309.56, 11448.19, and 6941.43 PJ, respectively. Shanghai has the highest embodied energy use per capita (464.24 GJ), followed by Tianjin (447.49 GJ), Beijing (390.91 GJ), and Chongqing (220.78 GJ). Fixed capital formation accounts for above 70% of local energy requirements in Chongqing as the leading final demand category, while Urban household consumption in Shanghai accounts for nearly 40% of its local energy requirements. More than 20% of energy requirements in Beijing are imported from foreign economies, while about 10% of embodied energy uses in Shanghai are exported to other countries, mainly due to their location advantages and economic openness. Through depicting energy requirements of urban economies, this study is essential to recognize visible and embodied energy uses along multi-scale supply chains and address cross-boundary potentials of energy saving at urban, national, and global scales.

Keywords: Embodied energy; Multi-scale; Input-output analysis; Megacities (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2023-02-25
Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019387