Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion
Wentao Ma,
Peng Guo,
Xiaofei Wang,
Zhiyu Zhang,
Siyuan Peng and
Badong Chen
Energy, 2022, vol. 260, issue C
Abstract:
Kalman filters (KFs) are widely used for state-of-charge (SOC) estimation of Li-ion batteries due to their excellent dynamic tracking capability. Especially the cubature KF (CKF), with the computational efficiency and nonlinear processing ability, is an outstanding candidate for SOC estimation. However, the actual working conditions are complex and changeable, and the measurement data is usually accompanied by non-Gaussian noise (outliers). Therefore, the performance of the original CKF with minimum mean square error (MMSE) criterion may be degraded seriously in these cases. In order to enhance the robustness of CKF, the MMSE in the CKF framework is substituted by the generalized maximum correntropy criterion (GMCC), and thus a robust CKF with GMCC (GMCC-CKF) is developed by fixed point iteration approach in this work. Furthermore, a SOC estimation model via the GMCC-CKF is proposed to improve estimation accuracy under non-Gaussian noise environments. The simulation results show that, compared with the traditional KFs, the proposed GMCC-CKF can accurately estimate the SOC of lithium batteries under different temperatures and operating conditions considering non-Gaussian noise interference. The results of mean absolute error (MAE) and root mean square error (RMSE) are less than 1%, which verifies the excellent performance of GMCC-CKF.
Keywords: State of charge estimation; Cubature kalman filter; Generalized maximum correntropy criterion; Non-Gaussian noise (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222019788
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019788
DOI: 10.1016/j.energy.2022.125083
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().