EconPapers    
Economics at your fingertips  
 

Step-by-step CO2 injection pressure for enhanced coal seam gas recovery: A laboratory study

Gang Bai, Jun Su, Xueming Li, Chunsheng Guo, Mingxu Han, Xihua Zhou and Chaojun Fan

Energy, 2022, vol. 260, issue C

Abstract: With the objective of achieving an ‘emission peak and carbon neutrality’, the injection of CO2 into deep unmineable coal seams or abandoned mines can enhance the methane recovery from coalbeds and can realise CO2 geological sequestration. Traditionally, Constant CO2 injection pressure method(Const-CO2) is expensive and low injection capacity of coal seam. Therefore, this study proposes an SBS-CO2 method that steps the CO2 injection pressure. The results revealed that compared with const-CO2 method, the total recovery rate of CH4 was increased by 9.148% by SBS-CO2 method, with the largest increase (7.933%) in the stage II. The injection-production ratio of SBS-CO2 injection method was always smaller than Const-CO2. At the stage I, CO2 injected amount was reduced by 9.54%. CO2 injection amount of unit mass coal was reduced by 1.211 mL/g. The lower the injection pressure was, the higher was the permeability. In the proposed method, each pressurisation was followed by a temporary recovery in permeability, and the critical CO2 injection time of 140.83 min. The SBS-CO2 injection method can effectively improve the recovery efficiency of coalbed methane and CO2 injection efficiency, greatly reduce the risk of CO2 consumption and outburst, and significantly reduce the injection and time cost.

Keywords: Coal; Step-by-step CO2 injection pressure; CO2-ECBM; Methane recovery; Permeability; CO2 sequestration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222020874
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020874

DOI: 10.1016/j.energy.2022.125197

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020874