Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis
Amir Mosayebi and
Mohammad Hosein Eghbal Ahmadi
Energy, 2022, vol. 261, issue PB
Abstract:
In the present study, the combined steam and dry reforming of methanol (CSDRM) process were performed in the temperature range of 400 °C-900 °C, CO2/H2O ratio of 0.5–2.5 and (CO2+H2O)/CH3OH ratio of 0.5–2.5 at the atmospheric pressure over a Pt/ZrO2 catalyst in fixed bed reactor. The experimental data was applied to model the kinetic of CSDRM reaction based on Langmuir-Hinshelwood (LH) isotherm with one active site on the catalyst surface taking into account. By comparing the two experimental and calculated values, it was seen that error of kinetic model in predicting the experimental methanol conversion was lower (7.97%) than other responses. An almost completed methanol conversion was attained above 800 °C at all values of CO2/H2O ratios except for (CO2 + H2O)/CH3OH ratio of 0.5. The temperature had a positive impact on the H2 and CO yields, however; the dependency of CO yield to temperature was higher than H2 yield. CO2 conversion slightly decreased from 400 °C to 500 °C, while started to increase at temperatures above 500 °C regardless of (CO2+H2O)/CH3OH and CO2/H2O ratios. H2/CO ratio near to 2 which is suitable for Fischer–Tropsch synthesis (FTS) reaction was obtained at (CO2+H2O)/CH3OH ratios bigger than 1.5, a CO2/H2O ratio of 1 and temperature above 800 °C. The methanol conversion values obtained from thermodynamic equilibrium were equal with the experimental data. The reverse water-gas shift reaction quickly happened at temperatures above 700 °C, higher values of CO2/H2O ratio and under excess oxidizing agent, which led to increasing the gap between the experimental data and measured from thermodynamic equilibrium analysis.
Keywords: Combined steam and dry reforming of methanol; Thermodynamic equilibrium analysis; Reverse water-gas shift; Kinetic model; H2/CO ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222021405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021405
DOI: 10.1016/j.energy.2022.125254
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().