EconPapers    
Economics at your fingertips  
 

Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm

Huaiyu Wang, Changwei Ji, Jinxin Yang, Shuofeng Wang and Yunshan Ge

Energy, 2022, vol. 261, issue PB

Abstract: This paper aims to optimize the intake characteristics of a side ported Wankel rotary engine by combining machine learning (ML) with genetic algorithm (GA). The computational samples are generated using Sobol sequences, in which the variables are the timing of port full opening, port start closing, and port full closing (PFC). A two-layer structured ML prediction model is establishedwith the intake phases and geometric parameters as input variables. The results show that the coefficients of determination of the prediction models built by Gaussian process regression are greater than 0.99. The response surface presents that the PFC timing determines the intake loss and volumetric efficiency compared to others. The volume efficiency and intake loss are fitted as a quadratic function in the Pareto front. In all the typical cases, the deviation between prediction and calculation is less than 1%. In the typical case C, the intake loss is reduced by 19.39%, and the volumetric efficiency is only reduced by 0.01%. It is promising to integrate ML with GA for further improvements of engine performance.

Keywords: Side ported Wankel rotary engines; Intake port shape optimization; Intake characteristics; Machine learning and genetic algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222022186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022186

DOI: 10.1016/j.energy.2022.125334

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022186