EconPapers    
Economics at your fingertips  
 

Pyrolysis oil blended n-butanol as a fuel for power generation by an internal combustion engine

Magdalena Szwaja, Mariusz Chwist, Arkadiusz Szymanek and Stanisław Szwaja

Energy, 2022, vol. 261, issue PB

Abstract: The article discusses results from the investigation of the n-butanol-pyrolysis oil blend, which can be considered a potential fuel for the internal combustion spark-ignition engine operating in a power generation set. The n-butanol-pyrolysis oil blends were prepared at two ratios of 3:1 (25%) and 1:1 (50%) by volume, respectively. As reference fuels for combustion tests in the engine, regular gasoline (gasoline EU 95) and n-butanol were proposed. The combustion tests were conducted on the single-cylinder research engine at a compression ratio of 11:1 and an equivalence ratio of 1. The experimental analysis was focused on engine performance, combustion phases, knock occurrence, and exhaust emissions. As observed, combustion got slower for butanol-pyrolysis oil blends. CO emission was similar to tests with reference fuels. Unburnt hydrocarbons increased with pyrolysis oil increased to 50% in a blend. NO emissions were reduced. It was found that n-butanol blended pyrolysis oil at a ratio of 3:1 can be successfully applied as the fuel to the spark-ignition engine. Additionally, it was found that this blend is more resistant to combustion knock compared to regular gasoline 95. Hence, the engine can work at a higher compression ratio without any malfunctions caused by combustion knock.

Keywords: Pyrolysis oil; Blend; Performance; Knock onset; Exhaust emissions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222022228
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022228

DOI: 10.1016/j.energy.2022.125339

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022228