Sooting transition diagnostics in counter-flow flames of C4 isomer fuels
Chen Chen,
Xuan Zhao,
Dandan Qi,
Kaixuan Yang,
Lei Xu,
Tianjiao Li,
Yaoyao Ying and
Dong Liu
Energy, 2023, vol. 262, issue PB
Abstract:
Macroscopic transition processes of soot formation for 1-butene, isobutene, n-butane and isobutane counterflow diffusion flames from sooting-free to heavy-sooting were studied by varying fuel concentration (XF) in the fuel stream. A novel optical diagnostic algorithm was proposed to classify different sooting transition stages in flames. Effects of saturated/unsaturated bonds and linear/branched structures of fuel molecules on the sooting transition were investigated in details. Flame species were detected and quantified by on-line gas chromatography and also kinetic analysis was performed. KL factor was obtained by optical diagnostics to qualitatively compare soot concentrations. Results showed that XF required for 1-butene flame to reach the critical state of macroscopic sooting transition was the lowest, followed by isobutene, isobutane and n-butane flames. Fuels with higher sooting tendencies could achieve entire sooting transition process with a narrower range of XF. Linear butane was more difficult to achieve the sooting transition than branched butane, while linear 1-butene was easier to form soot than branched butene, reflecting the difference between isomeric structures acting on C4 alkenes and alkanes. These might be largely due to the close association of allyl (C3H5-A) with 1-butene. Higher C3 species content in isobutane flame made it have higher sooting tendency than n-butane.
Keywords: Butene isomers; Butane isomers; Sooting transition; Combustion chemistry; Counterflow diffusion flames (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024987
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024987
DOI: 10.1016/j.energy.2022.125612
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().