EconPapers    
Economics at your fingertips  
 

A statistical approach to modeling the variability between years in renewable infeed on energy system level

Christopher Jahns, Paul Osinski and Christoph Weber

Energy, 2023, vol. 263, issue PA

Abstract: Energy system models often rely on assumptions about the infeed of renewable energies. Despite their significance, the renewable time series are often based on single weather years, selected without applying clear criteria. For planning purposes of photovoltaic plants or heating and cooling systems, it is common practice to artificially create weather years composed of months from different years. However, there are only few models for the composition of artificial weather years that represent a well-defined high- or low-infeed-scenario. A new method is proposed to artificially construct infeed time series on system level. Under the assumption of a normal distribution, we compose an infeed time series which aims at meeting a certain quantile of annual infeed. Thus, it is possible to construct different infeed scenarios, to model the inter-year variability of the renewable infeed. The method at hand can be useful for everyone who uses exogenous infeed time series in energy modeling.

Keywords: Renewable energy; Energy system model; Time series; Scenarios (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222024963
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024963

DOI: 10.1016/j.energy.2022.125610

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024963