Sensor cost-effectiveness analysis for data-driven fault detection and diagnostics in commercial buildings
Liang Zhang,
Matt Leach,
Jianli Chen and
Yuqing Hu
Energy, 2023, vol. 263, issue PB
Abstract:
Data-driven building fault detection and diagnostics (FDD) is heavily dependent on sensors. However, common sensors from Building Automation Systems are not optimized to maximize accuracy in FDD. Installing additional sensors that provide more detailed building system information is key to maximizing the performance of FDD solutions. In this paper, we present a sensor cost analysis workflow to quantify the economic implications of installing new sensors for FDD using the concept of sensor threshold marginal cost (STMC). STMC does not represent actual sensor cost. Rather, it represents a target cost based on the economic benefit that would be realized through improved FDD performance and one or more specified economic criteria. We calculate STMCs for multiple possible fault types and use fault prevalence information to aggregate STMCs into a single dollar value to determine the cost-effectiveness of a potential sensor investment. We conducted a case study using Oak Ridge National Laboratory's Flexible Research Platform (FRP) test facility as a reference. The case study demonstrates the feasibility of the analysis and highlights the key cost considerations in sensor selection for FDD. The results also indicate that identifying and installing the few key sensor(s) is critical to cost-effectively improve FDD performance.
Keywords: Building sensors; Cost analysis; Cost effectiveness; Threshold marginal cost; Building fault detection and diagnostics; Fault prevalence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202463X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s036054422202463x
DOI: 10.1016/j.energy.2022.125577
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().