Exergy, energy and environmental evaluation of a biomass-assisted integrated plant for multigeneration fed by various biomass sources
Mojtaba Lak Kamari,
Akbar Maleki,
Raheleh Daneshpour,
Marc A. Rosen,
Fathollah Pourfayaz and
Mohammad Alhuyi Nazari
Energy, 2023, vol. 263, issue PB
Abstract:
It is expected that fossil fuels will be replaced by renewable energy sources to reduce environmental pollution. Multigenerational integrated plants which generate various useful outputs from the same input are required to utilize these sources more efficiently. An innovative multigeneration system based on biomass for useful outputs including district cooling and heating, bioethanol, biogas, and electricity is proposed in this study. The system includes a biomass combustion unit, Rankine cycle, biofuel production unit, and absorption cooling cycle. 15 types of biomass sources are considered for the combined system and a thermodynamic and environmental analyses are carried out to assess the effects of biomass sources on the multigeneration system. According to the modeling results, using cotton stem leads to the highest CO2 emission (195.3 kg/MWh) while switchgrass produces the lowest (147.0 kg/MWh). The thermodynamic analysis reveals that, for all considered cases, the burner has the maximum exergy destruction rate among all the stages. Moreover, the exergy and energy efficiencies of the plant for different fuels were assessed, and show that the use of rice straw and rice husk exhibit the highest (68.30%) and lowest (62.72%) overall energy efficiencies, respectively. It is also observed that the system using rice straw and larch wood has the highest (45.29%) and lowest (42.86%) overall exergy efficiencies, respectively. The effects of significant input factors are examined on the system performance and emission indicants.
Keywords: Renewable energy; Biomass; Efficiency; Energy; Exergy; CO2 emission; Sustainable development (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202535X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s036054422202535x
DOI: 10.1016/j.energy.2022.125649
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().