EconPapers    
Economics at your fingertips  
 

Event-triggered distributed control strategy for multi-energy systems based on multi-objective dispatch

Jinglu Liu, Chen Wang, Jingshu Liu and Pengfei Xie

Energy, 2023, vol. 263, issue PD

Abstract: As environmental protection greatly influences the social development, for the multi-energy systems (MES) equipped with a cluster of energy devices, the economic dispatch (ED) problem should not only be considered but also the environmental protection problem should be considered in energy utilization. To address this issue, a multi-objective dispatch model of MES using a linear weighted sum algorithm (LWS) is developed in this paper, which considers the environmental and economic costs. On this basis, a fully distributed algorithm with the coupled control mechanism of power and heat is presented to realize coordination optimization between the environmental and economic benefits. Furthermore, an event-triggered communication strategy is implemented in the fully distributed algorithm, which can be effectively applied to the multi-objective dispatch model, to reduce the communication burden. Finally, the simulation results verify the effectiveness of the proposed distributed control strategy.

Keywords: Event-triggered; Fully distributed algorithm; Linear weighted sum algorithm; Multienergy systems; Coupled control mechanism; Multi-objective dispatch (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222028663
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028663

DOI: 10.1016/j.energy.2022.125980

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028663