Applying an improved particle swarm optimization algorithm to ship energy saving
Wei Du,
Yanjun Li,
Jianxin Shi,
Baozhi Sun,
Chunhui Wang and
Baitong Zhu
Energy, 2023, vol. 263, issue PE
Abstract:
Due to the increasingly competitive maritime market and stringent regulatory requirements, the optimization of ship energy efficiency is attracting more and more attention. The energy efficiency of ship navigation is affected by many factors such as ship structure, crew operation and navigation environment. In this paper, the proposed improved second-order oscillating PSO algorithm is used to study the ship energy efficiency from the viewpoint of route optimization by considering the sea conditions and constraints. Firstly, a nonlinear optimization model for ship FOC (fuel oil consumption) considering the time-varying sea state is established. On this basis, the energy efficiency and economic benefits are analyzed in terms of multiple indicators e.g., FOC and CO2 emissions per unit distance and per unit mass of freight. Finally, the energy saving potential of the method is demonstrated with an example of an oil tanker. The results show that both FOC and emissions are reduced after optimization, and energy efficiency and economy are improved by 1.17% and 2.55%, respectively. This indicated that the considerable effect of the proposed method applied to ship energy saving optimization.
Keywords: Ship energy saving; PSO algorithm; Weather conditions; Energy efficiency index (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222029668
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029668
DOI: 10.1016/j.energy.2022.126080
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().