Experimental and kinetics study of NO heterogeneous reduction on semi-coke and its chars: Effects of high-temperature rapid pyrolysis and atmosphere
Pengqian Wang,
Bo Bai,
Chang'an Wang,
Yongbo Du,
Chaowei Wang and
Defu Che
Energy, 2023, vol. 264, issue C
Abstract:
The high-temperature rapid pyrolysis has an evident impact on NO heterogeneous reduction over semi-coke char, which is rarely reported before. This study systematically evaluated the reactivity and kinetics of NO reduction over semi-coke and its rapid pyrolysis chars with the presence of O2 and CO using a fixed-bed reactor. The experimental results showed that the rapid pyrolysis at a desirable temperature of roughly 1100 °C can promote NO reduction over semi-coke, but excessively high and low pyrolysis temperatures were unfavorable for char-NO reaction. Partially explaining the situation was the trend of a rise before fall in specific surface area and C–O bond content of char with the rising pyrolysis temperature. The rapid pyrolysis char formed above 1100 °C showed lower activation energy than the fixed-bed pyrolysis char by 24.10%, but the higher one by 12.55% at 900 °C. The presence of CO noticeably promoted the NO reduction and reduced the activation energy by up to 41.73% at 0.75% CO, while the addition of oxygen inhibited NO reduction over semi-coke char. The suitable pyrolysis temperature with the presence of CO favored NO reduction over rapid pyrolysis char, which guided semi-coke utilization as a fuel or reducing agent.
Keywords: NO heterogeneous Reduction; Rapid pyrolysis; Semi-coke; High temperature; Kinetic analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222031863
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:264:y:2023:i:c:s0360544222031863
DOI: 10.1016/j.energy.2022.126300
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().