EconPapers    
Economics at your fingertips  
 

Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid

Jürgen Krail, Georg Beckmann, Florian Schittl and Gerhard Piringer

Energy, 2023, vol. 266, issue C

Abstract: In contrast to water-steam Rankine cycles, the ORC process uses organic working fluids. For working fluids of the dry class, a recuperator heat exchanger is frequently installed to increase the cycle efficiency. This paper analyses an improved ORC process with these features: A liquid working fluid stream is injected into the vapour flow between the high-pressure and the medium-pressure stage of the turbine. Furthermore, the recuperator is replaced by a spray condenser. The main objective is to increase efficiency with moderate changes in the process layout. A thermodynamic comparison of the improved process with a state-of-the-art ORC process is carried out by simulations and optimisations. A significant efficiency gain for the improved ORC process is obtained by a combination of the aforementioned features, mainly because of an increase of the mass flow in the economiser of the vapour generator (better heat utilization) and a corresponding mass flow in the medium stage of the turbine (additional power production). As a use case, waste heat utilization from a clinker cooler at a temperature level of 275 °C was simulated. The improved process would lead to a significant increase in the overall net efficiency by up to 14%, compared to a state-of-the-art ORC process.

Keywords: Waste heat recovery; Organic Rankine Cycle (ORC); Process simulation; Improved process design; Process efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222032388
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032388

DOI: 10.1016/j.energy.2022.126352

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032388