Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup
Atul Kumar,
Hsien-Wen Chen and
Shouyin Yang
Energy, 2023, vol. 266, issue C
Abstract:
This study improved existing models by conducting experiments to determine breakup delay, child droplet dynamics, and the effect of microexplosion. Direct imaging was used, and droplets were suspended on a holder. The initial droplet diameter was between 0.5 and 1 mm, the temperature ranged from 700 to 1500 K, and the concentration of water in combustible liquid varied from 5 to 15 wt%. The process of microexplosion was simplified to interpret experimental results by assuming that water subdroplets were spherical and located in the center of a spherical nonemulsified fuel droplet and that water subdroplets can be present anywhere in the emulsified fuel droplet. The modeling results are consistent with the experimental results. The predicted and experimental droplet breakup times differed by 15 wt% or less for nonemulsified fuels and by 35 wt% or less for emulsified fuels. The postbreakup analysis revealed the microexplosion strength and its effect on child droplets. The prediction of microexplosion strength K was based on the superheating of water subdroplets. This model accounts for almost all parameters to approximate experimental results. This study improved the models of microexplosion to facilitate their use in the secondary atomization of multicomponent fuels.
Keywords: Puffing; Microexplosion; Rayleigh–Taylor (RT) instability; Impact factor; Breakup delay; Child droplet (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222032558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032558
DOI: 10.1016/j.energy.2022.126369
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().