EconPapers    
Economics at your fingertips  
 

Study on dominant structural factors and laws of combustion performance of acidified coal

Haoran Dou, Guanhua Ni, Gongshuai Sun, Zhao Li, Xianlong Yin, Qiming Huang and Zhenyang Wang

Energy, 2023, vol. 266, issue C

Abstract: The application of acidification technology changes the pore structure and microcrystalline structure of coal, which affects the combustion characteristics of coal products. In this study, three inorganic acids (HF, HCl, and HNO3) were used to treat bituminous coal, and low-temperature nitrogen adsorption tests, X-ray diffraction analysis (XRD), and simultaneous thermal analysis (STA) were carried out. Fractal dimension theory, microcrystalline structure analysis theory, and thermal analysis kinetic theory analyze the pores, crystallites, and combustion characteristics of raw coal and acidified coal, respectively. The correlation between variables can be judged by the Pearson correlation coefficient. The research results show that compared with the microcrystalline structure, the pores determine the acidified coal's synthetical combustion index S, maximum value of differential thermal analysis DTAtop and maximum mass loss rate dW/dtmax to a greater extent. Hydrofluoric acid increased the average pore size of the raw coal by 38.66%, resulting in an 11.60% increase in dW/dtmax. The ignition temperature T5 is the composite performance of the aromatic structure's thermal stability and the microcrystalline structure's ordering. The aromaticity fa determines the reaction in the oxidation weight gain stage to a greater extent and can be used as a new indicator to characterise the spontaneous combustion tendency of coal. The pore and microcrystalline structures jointly determine the activation energy E3 in the combustion stage.

Keywords: Fractal dimension; Microcrystalline structure; Thermal analysis kinetics; Synthetical combustion index; Pearson correlation coefficient (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222032996
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032996

DOI: 10.1016/j.energy.2022.126413

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032996